
Triple DES and AES 192/256
Implementation Notes
Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

Kings Village Center #66190
Scotts Valley, CA 95067

iwl.com
+1.831.460.7010

info@iwl.com

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

1

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

2iwl.com ©2014, InterWorking Labs, Inc. ALL RIGHTS RESERVED.

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

3iwl.com ©2014, InterWorking Labs, Inc. ALL RIGHTS RESERVED.

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

4iwl.com ©2014, InterWorking Labs, Inc. ALL RIGHTS RESERVED.

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

5

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

iwl.com ©2014, InterWorking Labs, Inc. ALL RIGHTS RESERVED.

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

6

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

iwl.com ©2014, InterWorking Labs, Inc. ALL RIGHTS RESERVED.

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

7

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

iwl.com ©2014, InterWorking Labs, Inc. ALL RIGHTS RESERVED.

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

iwl.com ©2014, InterWorking Labs, Inc. ALL RIGHTS RESERVED.

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

8

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

9

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

iwl.com ©2014, InterWorking Labs, Inc. ALL RIGHTS RESERVED.

Sample Password-to-Key and KeyChange results of Triple DES and AES 192/256

implementation

For InterWorking Labs customers who require detailed information on the

implementation of the AES 192/256 and 3DES in SilverCreek, the SNMP Test Suite

1. TripleDES passwordToKey and keyChange samples.

Algorithm description:

http://tools.ietf.org/html/draft-reeder-snmpv3-usm-3desede-00

 Chaining of the Password-to-Key Algorithm

Some cryptographic algorithms may require keys that have a length greater than the that

of the hash output used by the password-to-key algorithm. This will be the case, for

example, with any user that defines usm3DESEDEPrivProtocol as its privacy protocol

(described below in Section 6). To acquire the necessary number of key bits, the

password-to-key algorithm may be chained using its own output as further input in order to

generate an appropriate number of key bits.

Chaining is described as follows. First, run the password-to-key algorithm with inputs of the

passphrase and engineID as described in the USM document. This will output as many

key bits as the hash algorithm used to implement the password-to-key algorithm.

Secondly, run the password-to-key algorithm again with the previous output (instead of the

passphrase) and the same engineID as inputs. Repeat this process as many times as necessary in

order to generate the minimum number of key bits for the chosen privacy protocol. The outputs of

each execution are concatenated into a single string of key bits.

When this process results in more key bits than are necessary, only the most significant bits of the

string should be used.

For example, if password-to-key implemented with SHA creates a 40-octet string string for use as key

bits, only the first 32 octets will be used for usm3DESEDEPrivProtocol.

Chaining may be demonstrated using simplified pseudo-code as follows, let:

 Output_bits <-- P2K(Input_bits, EngineID)

where the string of key bits (Output_bits) is returned from the password-to-key (P2K) algorithm which

takes a string of bits (Input_bits) and the engineID (EngineID) as inputs. One iteration of chaining,

creating a localized key of twice the normal length is achieved as follows:

 K1 <-- P2K(<passphrase>, <engine_id>)

 K2 <-- P2K(K1, <engine_id>)

 localized_key = K1 | K2

The next further iteration will pass K2 (instead of K1) and return K3. The iteration after that passes K3

and returns K4, etc. The results of all iterations (K1, K2, ..., Kn) are concatenated to form the localized

key. Note that the engineID is the same for all iterations.

A TripleDES 32 octets (256 bits) keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 32-octet key using MD5.

The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through 16) are

generated by the password-to-key algorithm with the password as input. The second 16 octets (bytes

17 through 32) are generated from the password-to- key algorithm with the first 16 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

32-octet localized key of: '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b 79 ef f4 4a 90 65 0e e0 a3

a4 0a bf ac 5a cc 12'H

A 2. Sample keyChange Results for 32-octet keys

Sample keyChange Results for 32-octet Keys Using MD5

Let us assume that a user has a current password of "maplesyrup" as in section A.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 70 29 8b 75 7c 91 99 b6 a8 fb f3 93 7b e0 54 86'H

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

We compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ac fb 19 0e d2 e2 29 50 f5 7a cd 90 68 cb 1e b2

 a5 56 cc eb c8 f3 ba d0 c4 05 51 57 db a8 d2 6b'H

B TripleDES 32 octets (256 bits) keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 40-octet key using SHA.

The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through 20) are

generated by the password-to-key algorithm with the password as input. The second 20 octets (bytes

21 through 40) are generated from the password-to- key algorithm with the first 20 octets as input.

Each invocation of the password-to-key algorithm in the generation of a string of key bits uses the

same engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used twice as described above, produces a

40-octet localized key of:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84 97 b3 8f 3f

 9b 8b 6d 78 93 6b a6 e7 d1 9d fd 9c d2 d5 06 55 47 74 3f b5'H

B.2. Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section B.2. and let us also

assume the snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 97 74 35 55 f9 fc f9 4a c3 e7 e9 22'H

Note that this value has been truncated from 40 to 32 octets.

Then, using the following value as a placeholder for the random value:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ce 13 28 fb 9a 9c 19 ce c1 51 a3 5a 77 f9 20 39

 ca ff 00 c9 b3 9b 19 a0 5e 01 75 55 94 37 6a 57'H

2. AES192 and AES256 passwordToKey and keyChange samples

Algorithm description:

http://tools.ietf.org/html/draft-blumenthal-aes-usm-04

Short Localized Keys

The encryption protocols defined on this memo SHOULD be used with an authentication protocol that

generates a localized key with enough key material to derive a 128/192/256 bits encryption key. At the

time of this writing an authentication protocol with such characteristics has not been defined within the

USM model for the SNMPv3 architecture.

However, if the size of the localized key is not large enough to generate an encryption key the

following algorithm is applied to extend the localized key:

1)Let Hnnn() the hash function of the authentication protocol for the user U on the SNMP authoritative

engine E. nnn being the size of the output of the hash function (e.g. nnn=128 bits for MD5, or

nnn=160 bits for SHA1).

2)Set c = ceil (256 / nnn)

3)For i = 1, 2, ..., c

 a.Set Kul = Kul || Hnnn(Kul); Where Hnnn() is the hash

 function of the authentication protocol defined for that user

As an example if the user authentication protocol is HMAC-SHA1-96, the hash function Hnnn is SHA1

with nnn=160 bits. The algorithm will generate a localized key 480-bit long:

 Kul' = Kul || SHA1(Kul) || SHA1(Kul||SHA1(Kul))

A. 24 or 32 octets keys with MD5

A.1. Password-to-Key Chaining Sample Results using MD5

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using MD5. The password used in this example is "maplesyrup". The first 16 octets (bytes 1 through

16) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 17 through 32) are generated from the MD5 hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 16 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f 4b 09 19 2b e1 0d fa ec'

 or a 24-octet localized key for AES192:

 '52 6f 5e ed 9f cc e2 6f 89 64 c2 93 07 87 d8 2b

 fa 24 a9 24 67 42 6c 2f'

A.2. Sample keyChange Results for 32-octet or 24-octet keys

 Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section C.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71 b5 b3 cc de a9 83 11 c4'

 --24-octet AES256 key--

 87 02 1d 7b d9 d1 01 ba 05 ea 6e 3b f9 d9 bd 4a

 0d ad 14 1a f6 d8 03 71'

Then, using the following value as a placeholder for the random value:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 4f 86 e0 ad 03 35 be 93 6e 0d 0b 00 4d a8 8e 36

 c1 d9 57 1d 6a a2 0f 40 97 a3 f3 a7 3d cf 44 ba'

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 54 72 81 da 7d 4f f5 80

 aa 5c d5 85 ab b6 5f e6 68 77 6b 63 5b 45 c7 b4'

B. 24 or 32 byte keys with SHA

B.1. Password-to-Key Chaining Sample Results using SHA

The following shows a sample output of the password-to-key algorithm for a 24-octet or 32-octet key

using SHA. The password used in this example is "maplesyrup". The first 20 octets (bytes 1 through

20) are generated by the password-to-key algorithm with the password as input. The second 8 octets

(bytes 21 through 40) are generated from the SHA hash function (NOT the password-to- key algorithm

as used in Triple DES) with the first 20 octets as input.

The invocation of the password-to-key algorithm in the generation of a string of key bits uses an

engineID. In this example the engineID is:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

The final output of the password-to-key algorithm, used as described above, produces a 32-octet

localized key for AES256:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb 9a f2 55 68 fa 1f 5d be'

 or a 24-octet localized key for AES192:

 '66 95 fe bc 92 88 e3 62 82 23 5f c7 15 1f 12 84

 97 b3 8f 3f 50 5e 07 eb'

B.2. Sample keyChange Results for 32-octet or 24-octet keys

Sample keyChange Results for 32-octet Keys Using SHA

Let us assume that a user has a current password of "maplesyrup" as in section D.1. and let us also

assume an snmpEngineID of 12 octets:

 '00 00 00 00 00 00 00 00 00 00 00 02'H

If we now want to change the password to "newsyrup", then we first calculate the localized key for the

new password. It is as follows:

 --32-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8 06 32 dd e1 1c f5 9e 25

10

 --24-octet AES256 key--

 78 e2 dc ce 79 d5 94 03 b5 8c 1b ba a5 bf f4 63

 91 f1 cd 25 f7 82 79 f8'

Then, using the following value as a placeholder for the random value:

 --32-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00'H

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00'H

we compute a keyChange value of:

 --32-octet AES256 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 f9 0f 0c 9e 45 60 7d 5c cb 0c 3a d5 60 a7 76

 dc 70 20 a2 bb 81 04 d7 20 6e d2 b2 ac 89 17 7c

 --24-octet AES192 keyChange--

 '00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 d2 a1 7d 8f 3c ce c6 49

 da 83 88 45 e7 7f 61 a9 b7 bb 9a 20 f6 3f 2f 89'

Copyright 2014 InterWorking Labs, Inc. ALL RIGHTS RESERVED. SilverCreek and InterWorking Labs are registered trademarks of InterWorking Labs, Inc.
All other names are trademarks or registered trademarks of their respective owners. 08/2014.

Kings Village Center #66190
Scotts Valley, CA 95067
iwl.com
+1.831.460.7010
info@iwl.com

Need a justi�cation to purchase?

